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Rotation and structure of FoF1-ATP synthase
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FoF1-ATP synthase is one of the most ubiquitous en-
zymes; it is found widely in the biological world, includ-
ing the plasma membrane of bacteria, inner membrane
of mitochondria and thylakoid membrane of chloro-
plasts. However, this enzyme has a unique mechanism
of action: it is composed of two mechanical rotary
motors, each driven by ATP hydrolysis or proton flux
down the membrane potential of protons. The two mo-
lecular motors interconvert the chemical energy of ATP
hydrolysis and proton electrochemical potential via the
mechanical rotation of the rotary shaft. This unique
energy transmission mechanism is not found in other
biological systems. Although there are other similar
man-made systems like hydroelectric generators,
FoF1-ATP synthase operates on the nanometre scale
and works with extremely high efficiency. Therefore,
this enzyme has attracted significant attention in a
wide variety of fields from bioenergetics and biophysics
to chemistry, physics and nanoscience. This review sum-
marizes the latest findings about the two motors of
FoF1-ATP synthase as well as a brief historical
background.

Keywords: ATP hydrolysis/FoF1-ATP synthase/high
reversibility/rotary motor/stepping rotation.

Abbreviations: ADP, adenosine diphosphate;
AMP-PNP, adenosine-50-(b,g-imino)-triphosphate;
ATP, Adenosine-50-triphosphate; ATPgS, adenosine
50-(g-thio)triphosphate; Pi, inorganic phosphate.

FoF1-ATP synthase

Adenosine-50-triphosphate (ATP) is the ubiquitous en-
ergy currency of the cell. The human body contains
about 50 g of ATP that is sustained by strict dynamic
equilibrium between hydrolysis and synthesis. The total
ATP produced under basal metabolism in humans am-
ounts to 50�75kg per day, and the same amount of ATP
is consumed for the large variety of energy-requiring
reactions such as muscle contraction, synthesis of bio-
molecules and mass transfer across biomembranes.
Under aerobic conditions, the major ATP synthesis
pathway is oxidative phosphorylation of which the
terminal reaction is catalysed by FoF1-ATP synthase.

This enzyme is found widely in the biological world,
including in thylakoid membranes, the mitochondrial
inner membrane and the plasma membrane of bac-
teria. This enzyme catalyses ATP synthesis from ad-
enosine diphosphate (ADP) and inorganic phosphate
(Pi) by using the electrochemical potential of protons
(or sodium ions in some bacteria) across the mem-
brane, i.e. it converts the electrochemical potential
into its chemical form. This enzyme also functions in
the reverse direction when the electrochemical poten-
tial becomes insufficient: it catalyses proton pumping
to form an electrochemical potential to hydrolyse ATP
into ADP and Pi. FoF1-ATP synthase is a super-
complex enzyme with a molecular weight of
4500 kDa and consists of two rotary motors. One is
F1 (�380 kDa), which is the water-soluble part of ATP
synthase. When isolated from the membrane portion,
it acts as an ATP-driven motor: it rotates its inner
subunit to hydrolyse ATP and is therefore termed F1-
ATPase. The other rotary motor of ATP synthase is Fo

(�120 kDa), which is embedded in the membrane and
generates rotary torque upon proton translocation that
is driven by proton electrochemical potential (Fig. 1)
(1). Bacterial F1 is composed of a3b3gde-subunits. The
three a- and b-subunits form the hexameric stator ring
in which the a- and b-subunits are alternately
arranged. The rotor shaft is the g-subunit, which is
accommodated in the central cavity of the a3b3-ring.
The e-subunit binds onto the protruding part of the
g-subunit and provides a connection between the rotor
parts of F1 and Fo. The e-subunit acts as the endogen-
ous inhibitor of F1 (2�4), by transforming the con-
formational state from the closed form to extended
form that blocks the g rotation due to steric hindrance
(5�8). This inhibitory function is thought to be physio-
logically important to avoid ATP consumption (9).
The d-subunit acts as a connector between F1 and Fo

that connects the stator parts. Thus, the minimum
complex of F1 as a motor is the a3b3g subcomplex.
Catalytic reaction centres for ATP hydrolysis/synthesis
reside at the three a�b interfaces, which are on the
anticlockwise side of the b-subunit as indicated with
red circles in Fig. 2A. The non-catalytic ATP-binding
sites reside on the other a/b interfaces. While the cata-
lytic site is formed mainly with amino-acid residues
from the b-subunit, the non-catalytic sites are primar-
ily within the a-subunit. Upon ATP hydrolysis on the
catalytic sites, F1 rotates the g-subunit in the anticlock-
wise direction viewed from the Fo side. Fo part consists
of ab2c10�15 subunits. The number of c subunits varies
among species. For example, the copy number of the c
subunit is eight in bovine mitochondria (10), 10 in
yeast (11), Escherichia coli (12) and thermophilic
Bacillus PS3 (13), 11 in Ilyobactor tartaricus (14, 15),
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Propionigenium modestum (16) and Clostridium
paradpxum (17), 13 in thermoalkaliphilic Bacillus
TA2.TA1 (18) and Bacillus pseudofirmus OF4 (19),
14 in spinach chloroplast (20) and 15 in Spirulina
platensis (21). The c subunits form a ring complex by
aligning in a circle. It is widely thought that the c-ring
and the a subunit form a proton pathway (for details,
see the ‘Proton translocation pathway of Fo’ section).
With the downhill proton flow through the proton
channel, the c-ring rotates against the ab2 subunits in
the opposite direction of the g-subunit of the F1 motor
(22). Thus, in the FoF1 complex, Fo and F1 push each
other in the opposite direction. Under physiological
condition where the electrochemical potential of the
protons is large enough to surpass the free energy of
ATP hydrolysis, Fo forcibly rotates the g-subunit in the
clockwise direction and then F1 catalyses the reverse
reaction, i.e. ATP synthesis which is the principle
physiological function of ATP synthase. In contrast,
when the electrochemical potential is small or de-
creases, F1 forces Fo to rotate the c-ring in the reverse
direction to pump protons against the electrochemical
potential.

Binding change mechanism and structure
of F1-ATPase

The three catalytic sites on the b-subunits work co-
operatively during catalysis. The classic working
model for F1 is the ‘binding-change mechanism’ pro-
posed by Paul Boyer (23). The early stage of this model

postulated alternating transition between two chemical
states, assuming two catalytic sites residing on F1. It
was later revised to propose the cyclic transition of the
catalytic states among three catalytic sites based on the
biochemical and electron microscopic experiments that
revealed that F1 has the three catalytic sites (24�26).
One important feature of this model is that the affinity
for nucleotide at each catalytic site is different from
each other at any given time, and the status of the
three b-subunits cooperatively change in one direction
accompanying g rotation. This hypothesis is strongly
supported by X-ray crystallographic studies performed
by Walker’s group (27). The first resolved crystal struc-
ture of F1 (27) revealed many essential structural
features of F1 at atomic resolution. Importantly, the
catalytic b-subunits differ from each other in conform-
ation and catalytic state: one binds to an ATP analogue,
adenosine-50-(b,g-imino)-triphosphate (AMP-PNP), the
second binds to ADP and the third site is empty
(Fig. 2A). Therefore, these sites are termed bTP, bDP

and bEmpty, respectively. While bTP and bDP have a
closed conformation wrapping bound nucleotides on
the catalytic sites, bEmpty has an open conformation
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Fig. 2 Crystal structure of the a3b3c subcomplex of F1. The crystal
structure of F1 from bovine mitochondria (PDB code; 1BMF).
The a-, b- and g-subunits are shown in yellow, green and red,
respectively. (A) The left figure is viewed from the membrane side
(Fo side), and is rotated 90� in anticlockwise direction to arrow (right
figure). The protruding part of g is directed toward the membrane
side (15). The catalytic sites are located at the a�b interface indicated
by red circles, which are primarily on the b-subunit. Each site carries
AMP-PNP, ADP, or is empty and is designated as bTP, bDP, or
bEmpty, respectively. The other interfaces are non-catalytic sites (blue
circles), all of which bind with AMP-PNP. Each a-subunit forming a
catalytic site with the b-subunit is designated as aTP, aDP and aEmpty,
respectively. (B) Conformational states of the b-subunit and the
catalytic a�b interfaces. Three a�b pairs with the g-subunit are
shown in yellow and green with the central g-subunit (red). The
a and b-subunits are composed of the N-terminal domain,
nucleotide-binding domain and C-terminal domain (from bottom
to top). bEmpty has an open conformation in which the a-helical
C-terminal domain rotates upwards to open the cleft of the
nucleotide-binding pocket. Both bATP and bADP have a closed
conformation entrapping the nucleotide within the closed pocket.
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Fig. 1 Fo and F1 motors of ATP synthase. Schematic images of
FoF1-ATP synthase. The rotor and stator parts are shown in red
and blue, respectively. The subunit composition of bacterial Fo is
ab2c10�15 (the number of c subunits varies from 10 to 15 in different
species). Fo is embedded in the cell membrane and rotates the c-ring
against the ab2 stator, driven by passive proton translocation along
the proton electrochemical potential that comprises the proton
concentration (�pH) and membrane voltage (��) across the
membrane. Bacterial F1 is composed of a3b3gd" and is an
ATP-driven rotary motor in which the g-subunit rotates against
the a3b3-cylinder. The "-subunit binds to the protruding part
of the g-subunit. The d binds to the bottom of the a3b3-ring (note
that the rotational direction of Fo is opposite to that of F1). In the
whole complex of FoF1, Fo reverses the rotation of F1, leading to
ATP synthesis from ADP and Pi.
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swinging the C-terminal domain away from the bind-
ing site to open the cleft of the catalytic site (Fig. 2B).
These features are consistent with the binding-change
mechanism. Another important feature found in the
crystal structure is that while the N-terminal domains
of the a and b-subunits form a symmetrical smooth
cavity as the bearing for g rotation at the bottom of
the a3b3-ring, the C-terminal domains of the b-subunit
show distinct asymmetric interactions with the
g-subunit. Therefore, the most feasible inference is
that the open-to-closed transition of the b-subunits
upon ATP binding pushes g, and the sequential con-
formational change among b-subunits leads the unidir-
ectional g rotation, which was recently visualized in
simultaneous imaging of the conformational change
of the b-subunit and the g rotation (28).

Verification of F1 rotation by
single-molecule observation

Since the publication of the crystal structure, many
studies have attempted to demonstrate the rotation
of F1. Crosslink exchange experiment between the
b- and g-subunits of F1 derived from E. coli (29) and
the polarized absorption relaxation of F1 from spinach
chloroplasts (30) have proven the rotational motion
of the g-subunit during catalysis. Unidirectional rota-
tion of the g-subunit upon ATP hydrolysis was proved
with the direct observation of F1 rotation from
thermophilic Bacillus PS3 (TF1) under the microscope
(31). In order to suppress rotary Brownian motion
study, F1 was immobilized on a glass surface modified
with Ni-nitrilotriacetic acid (NTA) thorough the inter-
action between Ni2þ and the His-tag, which was intro-
duced into the N-terminus of the b-subunit. In
addition, a fluorescently labelled actin filament with
length of 0.6�4 mm and diameter of 10 nm was at-
tached to the g-subunit as the rotation marker to mag-
nify the subtle motion of the g-subunit of which the
radius is only 1 nm, which is much smaller than the
spatial resolution (�200 nm) of a conventional micro-
scope (Fig. 3A). Note that in recent studies, other types
of probes such as polystyrene beads, gold colloidal
beads, gold nanorods, and magnetic beads are fre-
quently used instead of actin filaments because the
imaging of fluorescently labelled actin filaments suffers
from photobleaching. The rotational direction is
always anticlockwise when viewed from the Fo side
and, importantly, it was consistent with the expected
rotary direction from the crystal structure. Assuming
the b-subunit undergoes the conformational transition
from bEmpty, bTP and bDP, each catalytic state propa-
gates in the anticlockwise direction, accompanying
the anticlockwise g rotation. The rotational velocity
was far slower than the expected rate from bulk
ATPase measurements because of the large hydro-
dynamic friction exerted on the rotating actin filament.
However, this allows us to estimate the torque gener-
ated by individual F1 molecules from the hydrodynam-
ic friction that should be in equilibrium with F1’s
torque. The torque was determined to be around
40 pNnm. Although this is a rough estimation without

consideration of the viscosity increment in the imme-
diate vicinity of surface, the value was recently con-
firmed to be valid using more precise torque
measurements based on fluctuation theorem, which es-
timates the entropy generation upon the rotation with-
out assuming the friction coefficient (32). Taking into
account that the step size is 120�, each coupled with
single ATP hydrolysis turnover as below, F1 works
with 80 pNnm, which corresponds to the free energy
released from hydrolysis of a single ATP molecule
under physiological conditions, suggesting high 100%
energy conversion efficiency of F1.

Stepping rotation of F1

Many attempts have been made to resolve rotary
motion into discrete steps to clarify how the rotation
is coupled with each elementary catalytic step of ATP
hydrolysis: ATP-binding, hydrolysis and product re-
lease. The stepping rotation was first observed in the
rotation assay with actin filaments under ATP-limiting
conditions, where the ATP-binding process determines
the net turnover rate of ATP hydrolysis and rotation.
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Fig. 3 Single-molecule rotation assay of F1. (A) A schematic image
of the experimental setup. The a3b3-ring is fixed on the glass surface
to suppress translational and rotational Brownian motion of the
F1 molecule. A rotation probe (fluorescently-labelled actin filament)
is attached to the g-subunit to visualize the rotary motion under an
optical microscope. (B) Rotation of F1-ATPase under ATP-limiting
conditions (60 nM ATP). Inset shows the trajectory of the centroid
of the probe. (C) Rotation of mutant F1-ATPase, b(E190D), at
2 mM ATP. Under this condition, 120� step is divided into 0� and
80� dwelling positions. Each pause corresponds to ATP binding
and ATP catalytic dwelling positions, respectively. Arrow heads
and arrows indicate the positions of ATP binding and catalytic
dwell, respectively. (D) Rotation of a mutant F1-ATPase, b(E190D),
at saturating ATP (2mM). Hydrolysis rate is slowed by the muta-
tion so that three pauses to wait for the hydrolysis reaction are
observed.
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When [ATP] is well below the Michaelis�Menten con-
stant (KM) of the rotation (�1 mM), F1 showed discrete
120� steps that were intervened with pauses, consistent
with the pseudo 3-fold symmetry of the a3b3-ring
(Fig. 3B). The mean dwell time of the pause before
the steps was inversely proportional to [ATP], suggest-
ing that each step is triggered by a single event of ATP
binding. A histogram of the dwell time showed an
exponential decay with the time constant in consistent
with the observed mean dwell time, implying that the
single event triggers the 120� step (33). The coupling
ratio of a single 120� step per ATP was directly con-
firmed in a later study (34). However, the stepping
rotation was not detected at ATP-saturating condi-
tions owing to damping by high viscous friction
against actin filaments. Therefore, a very small probe
was employed to detect the intrinsic stepping motion
of F1. A single gold colloid (40 nm) was attached to
the g-subunit so that viscous friction was negligible,
and the maximum rotational velocity reached and
exceeded the expected rate from bulk ATPase (35).
The discrepancy from bulk ATPase is attributed to
some fraction of F1 being in an inactive state, the
so-called ADP-inhibited form (36), in the ensemble
measurement. In this rotation assay, the 120� step
rotation was observed even under ATP-saturating con-
ditions. Near the KM, where time constants for the
ATP-binding step and other catalytic steps are com-
parable, the rotation showed two substeps of which
angular displacement were resolved into 90� and 30�

(35). In a following experiment, in order to facilitate
the analysis of the catalytic dwell, a mutation was
introduced at the catalytic site, bE190D (thermophilic
Bacillus PS3) that significantly slows the rate constant
of hydrolysis step (37). Around KM, the mutant
F1 shows six pauses composed of 0� and 80� dwelling
positions during rotation, revising the substep sizes
to be 80� and 40� (Fig. 3C). Kinetic analyses of the
dwell time at 0� and 80� dwelling positions revealed
that these substeps are triggered by ATP binding
and two consecutive reactions with time constants
around 1ms, respectively. Recent studies have revised
the two time constants at 80� dwelling position to be
1.3ms and �0.1�0.3ms (38, 39). One of the two reac-
tions at 80� dwelling position was revealed to be the
hydrolysis step in the experiment that employed the
aforementioned mutant F1 with slow hydrolysis
rate and a slowly hydrolysing ATP analogue adeno-
sine 50-(g-thio)triphosphate (ATPgS) (37). The angular
dwelling positions at 0� and 80� are, therefore, termed
the binding angle and catalytic angle (Fig. 3C and D),
respectively. The angular positions of product release
were investigated by adding an excess of ADP or Pi in
the solution (38, 40). In the presence of ADP, the ro-
tation was slowed because of lengthening of the dwell
time at the binding angle, suggesting that the ADP-
releasing angle is at a binding angle. Simultaneous
imaging of fluorescently labelled nucleotide with the
g rotation also verified this point: fluorescently labelled
ATP is released presumably as ADP after the
g-subunit rotates 240� or more from the angle where
the nucleotide is bound to F1. In contrast, in the pres-
ence of Pi, F1 showed longer pauses at the catalytic

angle. Thus, it is thought that the release of ADP
and Pi occurs at the binding and catalytic angles, re-
spectively. Another intermediate of F1 at the binding
angle was unexpectedly found in the rotation assay at
low temperature, �4�C (40). This reaction showed
an extremely high Q10 factor of 19, so this reaction is
termed the temperature-sensitive reaction (TS). A
direct correlation between TS and the ATP-binding
or ADP-release step was not found although TS
takes place at the binding. Considering the high Q10

factor, TS reaction might be some conformational
rearrangement before or after ATP binding (41).

Reaction scheme of F1-ATPase

As mentioned above, all of the elementary reaction
steps were identified to occur at the binding angle
or catalytic angle. However, because there are three
positions for binding and catalytic angles, it is required
for the establishment of the reaction scheme of F1 to
determine at which angle each reaction occurs. ADP
release was shown to occur at 240�320�, but most
likely at 240�. The angle for hydrolysis was determined
using a hybrid F1 carrying a single copy of the afore-
mentioned mutant b-subunit, bE190D (42). This
hybrid allows us to identify the hydrolysis angle be-
cause the incorporated mutant b-subunit shows dis-
tinctly long pauses at two positions. One is at the
ATP-binding angle of the mutant b-subunit (0�), and
the other one is at þ200� from the binding angle. Thus,
the hydrolysis angle was determined to be 200�. Note
that the pause at 0� is due to the TS intermediate
state (41), although it was attributed to ATP waiting
dwell in the original report (43). The TS dwell could be
confounded as the 320� pause presumably due to ex-
perimental error. The timing of Pi release has recently
been determined to be at 320� in another type of
experiment (39) where F1 was stalled with magnetic
tweezers during hydrolysis dwell that was length-
ened by bE190D and/or ATPgS. On the basis of
the observation that bound ATP or ATPgS under-
goes hydrolysis and synthesis in a reversible manner,
it was shown that Pi (or thiophosphate) is not released
immediately after hydrolysis at 200�. Because the
Pi release has to be after hydrolysis and at a cata-
lytic angle, it was concluded that Pi release occurs at
320�. Thus, the present reaction scheme of rotation
and catalysis is as follows: ATP binding at 0�, hydroly-
sis at 200�, ADP release 240� and Pi release at 320�

(Fig. 4).

Correlation of reaction scheme with
crystal structure

While the single-molecule rotation assay revealed that
F1 has two stable conformations in pausing at the
binding or catalytic angle, current crystal structures
show essentially a single conformation. Correlation
with the crystal structure remained obscure, although
the interpretation of the crystal structure is crucial,
especially for theoretical studies. Therefore, attempts
have been made to determine whether the crystal struc-
ture represents the binding dwell or catalytic dwell
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(28, 44, 45). On the basis of the crystal structure, the
characteristic interaction with the g-subunit was iden-
tified in the bDP form. Cysteine residues were genetic-
ally incorporated into the residues involved in the
direct b-g contact. The mutant F1 was analysed in
the rotation assay. During observation, incorporated
cysteine residues were cross-linked through disulphide
bonds by infusing an oxidizing buffer to stall F1 in
the crystal structure form. The pausing angle corres-
ponded to the catalytic angle. Thus, it was shown that
the crystal structure represents the catalytic dwelling
state and that bTP, bDP and bEmpty correspond to the
80�, 200� and 320� state, respectively (Fig. 4, green
circles). These data were supported by experiments
by Masaike et al. where the C-terminal domain of
the b-subunit that undergoes the large swing motion
upon ATP binding was labelled with a fluorescent
dye (28). The observed angular positions in the cata-
lytic dwell corresponded to those observed in the crys-
tal structure. Interestingly, they found that at 240�, the
b-subunit takes a new conformation, which they
termed ‘half-closed’, while at other binding angles,
the b-subunit takes the same conformation as the
catalytic angles: open at 0� and closed at 120� (Fig. 4).

ATP synthesis upon reverse rotation of F1

Although the essential properties and basic mechano-
chemical coupling scheme of F1 as an ATP-driven
motor have been established, the physiological role
of FoF1-ATP synthase, that is ATP synthesis, has not

been sufficiently studied in single-molecule experi-
ments. If ATP synthesis is a simple reverse reaction
of hydrolysis, forcibly reversing rotation of F1 should
lead to efficient ATP synthesis. Two lines of single-
molecule experiments have been carried out to investi-
gate this hypothesis. In the first experiment (46), a
large number of F1 molecules were enclosed in an ob-
servation chamber and forcibly rotated in the reverse
direction with a magnetic bead tweezer system. The
synthesized ATP was detected as bioluminescence
using the luciferin�luciferase system. Although ATP
synthesis upon reverse rotation was clearly demon-
strated, the uncertainty of the number of active
F1 molecules in the chamber did not allow a quantita-
tive estimation of the mechanochemical coupling ratio.
Therefore, the following experiment focused a single
active F1 molecule to determine the coupling ratio
(34). The technical issue to be addressed was detection
of a very small number of ATP molecules generated
from a single F1 molecule. Even if we assume that
F1 synthesizes three ATP molecules per one revolution
at 10Hz for 1min, the total number of ATP molecule
is only 1,800 molecules (3.0�10�21mol), which is far
below the detection limit of the luciferase assay. To
address this issue, a microscopic reaction chamber
system was developed using a microfabrication tech-
nique, which has identically shaped reaction chambers,
each of which is a few microns in scale and has a
volume of 6 fL (47). Because the extremely small reac-
tion volume resulted in high concentration, it was pos-
sible to detect a small amount of reaction product
yielded from a single enzyme molecule. A single
F1 molecule was encapsulated in the microchamber
to accumulate synthesized ATP molecules (Fig. 5A
and B). After forcible reverse rotation with magnetic
tweezers, F1 was released from the tweezers. Because
the rotational rate of ATP-driven rotation is propor-
tional to [ATP] under the experimental conditions, one
can measure the increment of [ATP] as that of the
ATP-driven rotation rate. It was found that while the
a3b3g subcomplex showed very weak ATP synthesis
activity, the a3b3g" subcomplex had highly efficient
ATP synthesis, up to �80% (2.3 ATP molecules per
turn) (Fig. 5C). It is likely that the "-subunit stabilizes
the protruding portion of the g-subunit, as seen in the
crystal structure, to transmit the applied torque to g.
This result implies that the efficiency of the mechan-
ochemical coupling in ATP synthesis is also high in the
whole FoF1 complex. High reversibility of mechano-
chemical coupling is a remarkable feature of the ATP
synthase that distinguishes it from other molecular
motors; other motor proteins such as kinesin and
myosin do not synthesize ATP when the movements
are reversed by external force.

Structure of Fo

Bacterial Fo has the common and simple subunit stoi-
chiometry of ab2c10�15, while mitochondrial Fo has
additional subunits: d, e, f, OSCP, F6 and A6L (48).
We hereafter focus on the minimum subcomplex of Fo,
ab2c10�15. The structure of the c subunit was first
resolved in a monomer state by NMR (49). The c
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Fig. 4 Mechanochemical coupling scheme of F1. Each circle
represents the chemical state of the catalytic sites on the b-subunit.
The red arrow represents the angular position of the g-subunit.
O, C0 and C indicate the open, half-closed and closed forms,
respectively. The green catalytic site retains the bound nucleotide as
ATP until the g-subunit rotates 200� from the binding angle (0�).
At 200�, the catalytic site hydrolyses ATP into ADP and Pi, each of
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remains in the closed form until the g-subunit rotates 240�. At 240�,
this b-subunit moves to the half-closed form, and then it returns
to the open form with accompanying rotation of the g-subunit.
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subunit has a hairpin structure that is composed of two
a-helices and a connecting loop. Crystal structures of
the F1�c-ring structure (10, 11) and isolated c-ring
(14�17, 19�21) revealed that the c subunits form a
ring complex by assembling in a circle with the
C-terminus pointing outwards and the connecting
loop towards the F1 side (cytoplasmic side in bacteria)
(Fig. 6). The b subunit has an N-terminal transmem-
brane domain. The b subunit forms a homodimer (50)
which functions as the peripheral stalk to hold the
stator parts of F1 and Fo to avoid slippage. It was
shown that the b subunit has robustness against exten-
sive deletion and insertion at the cytoplasmic helix
(51, 52), suggesting that the b2 dimer also acts as the
elastic connector for smooth torque transmission. The
structure of the a subunit remains unclear. It is thought
that this subunit has five transmembrane helices
(53�55). Because the cavity of the c-ring is too small
to accommodate the a subunit and/or the b2 dimer,
each of which has five or two helices, it is reasonable
to assume that the ab2 complex resides outside of the
c-ring (56, 57).

Proton translocation pathway of Fo: the
2-channel model

The mechanical rotation of the c-ring by Fo is driven
by proton flow through Fo. Although the structural
basis of the proton translocation pathway is unknown,
extensive biochemical work on Fo subunits has identi-
fied several charged residues in the transmembrane
helices of the a and c subunits that would be directly
involved in proton translocation. Among them, Asp or
Glu of the c subunit and Arg of the a subunit, which
correspond to cAsp61 and aArg210 of E. coli Fo, are
highly conserved among species and thought to have
crucial roles in proton translocation. The crystal struc-
ture of the c-ring showed that the Asp residue (Glu in
I. tartaricus Fo) of the c subunit resides at the middle of
the C-terminal helix. The recent structure of the c10-
ring from I. tartaricus Fo, which is a Naþ-transporting
Fo, revealed that the Glu residues are occupied with
Naþ ions (Fig. 6). Thus, it is well established that this
conserved carboxyl residue is one of the proton-
binding sites. However, other charged residues are
not found in the c subunit in the vicinity of the carb-
oxyl residue, suggesting that the a subunit has proton
translocation pathways. The most widely accepted
model on proton translocation in Fo is the so-called
two-channel model, which assumes that the a subunit
possesses two proton pathways each of which spans
half of the membrane, but towards different sides;
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the channels connect the proton-binding site of the
c subunit with the periplasmic or cytoplasmic space
(58�60) (Fig. 6). Notice each channel has contact
with a different c subunit, which are adjacent to each
other. In other words, the a subunit interacts with
two c subunits, each contacting via a different half
channel. The proposed mechanism of proton transfer
in ATP synthesis mode is as follows (60�62): a proton
enters the half channel exposed to the periplasmic side
(or intermembrane space of mitochondria) and is then
transferred to the carboxy residue of the c subunit.
This protonation neutralizes the negative charge of
the residue, allowing the c subunit to rotate apart
from the a subunit towards the surrounding lipid
layer. At the same time, the neighbouring c subunit
at the anticlockwise side returns from the lipid layer
to form contacts with the other half channel, which
has a hydrophilic environment to promote deproto-
nation of the carboxyl residue. The released proton
then enters into the cytoplasmic space. The role of
the conserved Arg in the a subunit is likely to block
the futile rotation of the c subunit without deproto-
nation by attracting only the deprotonated c subunit
with its positive charge (62, 63). In the ATP-driven
proton-pumping mode, the sequence of events is
reversed.

Rotation of c-ring in Fo

After the direct observation of F1, the verification of
the c-ring rotation against the ab2 complex became
an important issue. Although around 10 years have
passed since the verification of the c-ring rotation,
little progress has been made on the rotary dynamics
of Fo, compared with F1, owing to challenges in hand-
ling the complicated membrane system and diffi-
culty in stably charging the membrane potential high
enough to reverse F1. Although detergent-solubilized
FoF1 was subjected to the rotation assay in ATP hy-
drolysis conditions in early studies (64, 65), the
observed rotation was insensitive to the gold-standard
inhibitor of Fo, dicyclohexyl-carbodiimide (DCCD),
implying that the observed rotating is not coupled
with the proton translocation of Fo (64, 66). The sub-
unit interactions of Fo are weakened in the presence
of detergent, which often causes subunit dissoci-
ation in biochemical assays (67). Actually, it has been
later reported that the rotation in this system is insensi-
tive to mutation at the conserved Arg of the a sub-
unit (68). Verification of the c-ring rotation came
from biochemical experiments showing that crosslink-
age of the c-ring with the rotor subunits of F1 (g and
e subunits) does not diminish ATP synthesis activity
(69), while the a�c crosslink abolishes ATPase activ-
ity coupled with proton translocation (70). Further
verification was made by detection of the exchanged
cross-link product between the a and c subunits, which
was probed with a 14C-labelled c subunit (71). Single-
molecule imaging of rotation under ATP synthesis
conditions has also been attempted. The rotation of
FoF1 reconstituted in liposome was detected from
the dipole moment angle of the fluorescent marker
dye incorporated into a rotor subunit (72) or Förster

resonance energy transfer (FRET) efficiency between
two fluorescent dyes introduced into the stator
and rotor subunits (73). A drawback of these experi-
ments is that the membrane potential is transient and,
therefore, it is very difficult to correlate the observed
rotational velocity with the membrane potential.
However, one essential property of Fo rotation was
revealed with the FRET experiment: multiple stepp-
ing rotation was detected that was interpreted as 36�

steps based on the 10-fold symmetry of the rotor (74).
The 36� stepping rotation was later proved in the
rotation assay under ATP hydrolysis conditions
where a gold nanorod was used as the rotation probe
(75). FoF1 was reconstituted into a nanodisc of lipid
bilayer, and the rotation was monitored from the
angle of polarized scattered light along the long axis
of the nanorod. However, understanding the dynamics
of Fo rotation is still in its early stages. Experimental
systems that allow stable charging of the membrane
potential simultaneously with observation of F1 rota-
tion with high spatiotemporal resolution are highly
awaited.
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